Recurrence Relations and Mathematical Induction:

Q No.1 Solve the following recurrence relations :

- (i) $a_r 7a_{r-1} + 10a_{r-2} = 0$, given that $a_0 = 0$ and $a_1 = 3$.
- (ii) $a_r 4a_{r-1} + 4a_{r-2} = 0$, given that $a_0 = 0$ and $a_1 = 6$.
- (iii) $a_r a_{r-1} a_{r-2} = 0$, given that $a_0 = 1$ and $a_1 = 1$.
- (iv) $a_r 2a_{r-1} + 2a_{r-2} a_{r-3} = 0$, given that $a_0 = 2$. $a_1 = 1$ and $a_2 = 1$.

Q No.2 Given that $a_0 = 0$, $a_1 = 1$ and $a_2 = 4$ and $a_3 = 12$ satisfy the recurrence relation

 $a_r + C_1 a_{r-1} + C_2 a_{r-2} = 0$

determine a_r.

Q No.3 The solution of recurrence relation $a_n-5a_{n-1}+6a_{n-2}=0$ where $a_0=2$ & $a_1=5$ is

a) $a_n = 2^n - 3^n$ b) $a_n = 2^n + 3^n$ c) $a_n = 2 \cdot 3^n + 5 \cdot 2^n$ d) $a_n = 3 \cdot 2^n + 2 \cdot 5^n$

Q No.4 The solution of recurrence relation $a_n-7a_{n-1}+12a_{n-2}=0$ for $n \ge 2$, where $a_0 = 2 \& a_1=5$ is

a) $a_n = 3^{n+4^n}$ b) $a_n = 3^n - 4^n$ c) $a_n = 3^{n+1} - 4^n$ d) $a_n = 3^{n+1} + 4^n$

Q No.5 The solution of recurrence relation $a_n-2a_{n-1}+a_{n-2}=0$ with initial conditions $a_0=1 \& a_1=2$ is

a) $a_n = n+2$ b) $a_n = 2^n+1$ c) $a_n = n-1$ d) $a_n = n+1$

Q No.6 The solution of recurrence relation $a_n-3a_{n-1}+3a_{n-2}=0$ where $a_0=0$ & $a_1=1$ & $a_2=2$ is

a) $a_n = n^2 + 1$ b) $a_n = n + 2n^2$ c) $a_n = n^2$ d) $a_n = n$

Q No. 7 Use mathematical induction to prove that sum of the first n odd positive integers is n^2 .