Recurrence Relations and Mathematical Induction:

Q No. 1 Solve the following recurrence relations:
(i) $a_{r}-7 a_{r-1}+10 a_{r-2}=0$, given that $a_{o}=0$ and $a_{1}=3$.
(ii) $a_{r}-4 a_{r-1}+4 a_{r-2}=0$, given that $a_{0}=0$ and $a_{1}=6$.
(iii) $a_{r}-a_{r-1}-a_{r-2}=0$, given that $a_{o}=1$ and $a_{1}=1$.
(iv) $a_{r}-2 a_{r-1}+2 a_{r-2}-a_{r-3}=0$, given that $a_{o}=2 . a_{1}=1$ and $a_{2}=1$.

Q No. 2 Given that $\mathrm{a}_{0}=0, \mathrm{a}_{1}=1$ and $\mathrm{a}_{2}=4$ and $\mathrm{a}_{3}=12$ satisfy the recurrence relation

$$
a_{r}+C_{1} a_{r-1}+C_{2} a_{r-2}=0
$$

determine a_{r}.
Q No. 3 The solution of recurrence relation $a_{n}-5 a_{n-1}+6 a_{n-2}=0$ where $a_{0}=2 \& a_{1}=5$ is
a) $a_{n}=2^{n}-3^{n}$
b) $a_{n}=2^{n}+3^{n}$
c) $a_{n}=2.3^{n}+5.2^{n}$
d) $a_{n}=3.2^{n}+2.5^{n}$

Q No. 4 The solution of recurrence relation $a_{n}-7 a_{n-1}+12 a_{n-2}=0$ for $n \geq 2$, where a_{0} $=2 \& a_{1}=5$ is
a) $a_{n}=3^{n+4 n}$
b) $a_{n}=3^{n}-4^{n}$
c) $a_{n}=3^{n+1}-4 n$
d) $a_{n}=3^{n+1}+4^{n}$

Q No. 5 The solution of recurrence relation $a_{n}-2 a_{n-1}+a_{n-2}=0$ with initial conditions $\quad a_{0}=1 \& a_{1}=2$ is
a) $a_{n}=n+2$
b) $a_{n}=2^{n+1}$
c) $a_{n}=n-1$
d) $a_{n}=n+1$

Q No. 6 The solution of recurrence relation $a_{n}-3 a_{n-1}+3 a_{n-2}=0$ where $a_{0}=0 \& a_{1}=1$ $\& \mathrm{a}_{2}=2$ is
a) $a_{n}=n^{2}+1$
b) $a_{n}=n+2 n^{2}$
c) $a_{n}=n^{2}$
d) $a_{n}=n$

Q No. 7 Use mathematical induction to prove that sum of the first n odd positive integers is n^{2}.

