S. No.	Unit Name	Chapters	Referenc es	Weeks
1.	Unit 1 Introduction to C++	1, 2	[2]	1
		Pg 10 – 17	[1]	
		Pg 20 – 22	[3]	
2.	Unit 2 Programming Fundamentals	3 (3.1 – 3.5, 3.9 – 3.13, 3.15, 3.18 – 3.22, 3.24 – 3.25) 4 (except 4.9 and 4.11) 11 (11.10)		2-5
3.	Unit 3 Object Oriented Programming	5 (except 5.2, 5.15, 5.18) 6 (except 6.8) 8 12	[2]	6 – 8
4.	Unit 4 Pointers and References	9		9 - 11
5.	Unit 5 Exception and File handling	13 (upto Pg 383 – before 'Catching Class Types as Exceptions') 11 (upto Pg 329)		12 – 15

Physical Sciences – Multidisciplinary 3 cores DSC01: Programming fundamentals using C++

Essential/recommended readings

- 1. Stephen Prata, C++ Primer Plus, 6th Edition, Pearson India, 2015.
- 2. E. Balaguruswamy, *Object Oriented Programming with C++*,8th edition, McGraw-Hill Education, 2017.
- 3. D.S. Malik, *C*++ *Programming: From Problem Analysis to Program Design*, 6th edition, Cengage Learning, 2013

Sample Practical List

1. Write a program to compute the sum of the first n terms of the following series:

 $S = 1 - 2^n + 3^n - 4^n + \dots$

The number of terms n is to be taken from the user through the command line. If the command line argument is not found then prompt the user to enter the value of n.

- 2. Write a program to display the following pattern:
 - A
 - BA

CBA

DCBA

The number of rows n, is to be taken from the user.

- 3. Write a program to compute the factors of a given number using the default argument.
- 4. Write a menu driven program to perform the following operations on an array:
 - a) Find the minimum, maximum and average of the array elements
 - b) Search an element in the array using linear and binary search
 - c) Display the address of every element of the array
- 5. Write a menu driven program to perform the following operations on a string:
 - a) Calculate length of the string (use pointers)
 - b) Check whether the first character of every word in the string is in uppercase or not
 - c) Reverse the string
 - d) Display the address of every character in the string
- 6. Create a class Triangle. Include overloaded functions for calculating the area of a triangle.
- 7. Create a template class TwoDim which contains x and y coordinates. Define default constructor, parameterized constructor and void print() function to print the coordinates. Now reuse this class in ThreeDim adding a new dimension as z. Define the constructors and void print() in the subclass. Implement main() to show runtime polymorphism.
- 8. Copy the contents of one text file to another file and display the number of characters copied.