
1

UNIVERSITY OF DELHI

CNC-II/093/1(25)/2023-24/òð

Dated: 30.05.2023

N O T I F I C A T I O N

Sub: Amendment to Ordinance V

[E.C Resolution No. 60/ (60-1-7/) dated 03.02.2023]

Following addition be made to Appendix-II-A to the Ordinance V (2-A) of the

Ordinances of the University;

Add the following:

Syllabi of Semester-III of the following departments under Faculty of Mathematical

Sciences based on Under Graduate Curriculum Framework -2022 implemented

from the Academic Year 2022-23.

FACULTY OF MATHEMATICAL SCIENCES

DEPARTMENT OF COMPUTER SCIENCE

BSC. (HONS.) COMPUTER SCIENCE

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title

& Code

Credits Credit distribution of the course Eligibility

criteria

Pre-requisite of

the course

(if any) Lecture Tutorial Practical/

Practice

DSC07

Data

Structures

4 3 0 1 Passed

12th class

with

Mathema

tics

Programming

using

Python/Object

Oriented

Programming

with C++

DISCIPLINE SPECIFIC CORE COURSE -7 (DSC-7) : Data Structures

2

Learning Objectives

The course aims at developing the ability to use basic data structures like arrays, stacks,

queues, lists, and trees to solve problems. C++ is chosen as the language to implement the

implementation of these data structures.

Learning outcomes

On successful completion of the course, students will be able to:

· Compare two functions for their rates of growth.

· Understand abstract specification of data-structures and their implementation.

· Compute time and space complexity of operations on a data-structure.

· Identify the appropriate data structure(s) for a given application and understand the

trade-offs involved in terms of time and space complexity.

· Apply recursive techniques to solve problems.

SYLLABUS OF DSC-7

Unit 1 (9 hours)

Growth of Functions, Recurrence Relations: Functions used in analysis, asymptotic

notations, asymptotic analysis, solving recurrences using recursion trees, Master Theorem.

Unit 2 (16 hours)

Arrays, Linked Lists, Stacks, Queues: Arrays: array operations, applications, two-

dimensional arrays, dynamic allocation of arrays; Linked Lists: singly linked lists, doubly

linked lists, circularly linked lists, Stacks: stack as an ADT, implementing stacks using arrays,

implementing stacks using linked lists, applications of stacks; Queues: queue as an ADT,

implementing queues using arrays, implementing queues using linked lists,. Time complexity

analysis.

Unit 3 (5 hours)

Recursion: Recursive functions, linear recursion, binary recursion.

Unit 4 (6 hours)

Trees, Binary Trees: Trees: definition and properties, tree traversal algorithms, and their time

complexity analysis; binary trees: definition and properties, traversal of binary trees, and their

time complexity analysis.

Unit 5 (7 hours)

Binary Search Trees, Balanced Search Trees: Binary Search Trees: insert, delete, search

operations, time complexity analysis of these operations; Balanced Search Trees: insert, search

operations, time complexity analysis of these operations. Time complexity analysis.

Unit 6 (2 hours)

3

Binary Heap: Binary Heaps: heaps, heap operations.

Essential/recommended readings

1. Goodrich, M.T., Tamassia, R., & Mount, D., Data Structures and Algorithms Analysis

in C++, 2nd edition, Wiley, 2011.

2. Cormen, T.H., Leiserson, C.E., Rivest, R. L., Stein C. Introduction to Algorithms,

4th edition, Prentice Hall of India, 2022.

Additional references

1. Sahni, S. Data Structures, Algorithms and applications in C++, 2nd edition,

Universities Press, 2011.

2. Langsam Y., Augenstein, M. J., & Tanenbaum, A. M. Data Structures Using C and

C++, Pearson, 2009.

Practical List (If any): (30 Hours)

 Practical exercises such as

1. Write a program to implement singly linked list as an ADT that supports the following

operations:
(i) Insert an element x at the beginning of the singly linked list
(ii) Insert an element x at ith position in the singly linked list

(iii) Remove an element from the beginning of the singly linked list
(iv) Remove an element from ith position in the singly link

(v) Search for an element x in the singly linked list and return its pointer
(vi) Concatenate two singly linked lists

2. Write a program to implement doubly linked list as an ADT that supports the following

operations:
(i) Insert an element x at the beginning of the doubly linked list
(ii) Insert an element x at ith position in the doubly linked list

(iii) Insert an element x at the end of the doubly linked list
(iv) Remove an element from the beginning of the doubly linked list
(v) Remove an element from ith position in the doubly linked list.

(vi) Remove an element from the end of the doubly linked list
(vii) Search for an element x in the doubly linked list and return its pointer

(viii) Concatenate two doubly linked lists

3. Write a program to implement circular linked list as an ADT which supports the

following operations:

(i) Insert an element x at the front of the circularly linked list

(ii) Insert an element x after an element y in the circularly linked list

(iii) Insert an element x at the back of the circularly linked list

(iv) Remove an element from the back of the circularly linked list

(v) Remove an element from the front of the circularly linked list

(vi) Remove the element x from the circularly linked list

(vii) Search for an element x in the circularly linked list and return its pointer

4

(viii) Concatenate two circularly linked lists

4. Implement a stack as an ADT using Arrays.

5. Implement a stack as an ADT using the Linked List ADT.

6. Write a program to evaluate a prefix/postfix expression using stacks.

7. Implement Queue as an ADT using the circular Arrays.

8. Implement Queue as an ADT using the Circular Linked List ADT.

9. Write a program to implement Binary Search Tree as an ADT which supports the

following operations:

(i) Insert an element x

(ii) Delete an element x

(iii) Search for an element x in the BST and change its value to y and then place the node

with value y at its appropriate position in the BST

(iv) Display the elements of the BST in preorder, inorder, and postorder traversal

(v) Display the elements of the BST in level-by-level traversal

(vi) Display the height of the BST

10. Write a program to implement a balanced search tree as an ADT.

Note: Examination scheme and mode shall be as prescribed by the Examination

 Branch, University of Delhi, from time to time.

Credit distribution, Eligibility and Prerequisites of the Course

Course title

& Code

Credits Credit distribution of the course Eligibility

criteria

Pre-requisite of

the course

(if any) Lecture Tutorial Practical/

Practice

 DSC 08

Operating

Systems

4 3 0 1 Passed

12th class

with

Mathema

tics

Programming

using

Python/Object

Oriented

Programming

with C++,

Computer

System

Architecture

DISCIPLINE SPECIFIC CORE COURSE – 8 (DSC-8): Operating Systems

